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Abstract—The method of eigenfunction expansion and matching can be applied to arbitrary shaped,
hollow tubes which are described by curved and straight pieces. The method is highly efficient and
superior to finite differences. The oval tube and the rounded polygonal tube are studied in detail.
Approximate formula for torsional rigidity from membrane analogy is valid only for thin tubes
with thickness less than 0.2. Maximum shear stress occurs either at re-entrant inner corners or at
the outer boundary on the minor axis. © 1997 Elsevier Science Ltd

INTRODUCTION

The study of the torsion of bars is important and basic in the design of structural elements
[Sokolnikoff (1956) ; Timoshenko and Goodier (1970)]. Analytic solutions have been found
for some simple cross-sectional shapes such as the circle, annulus, ellipse, rectangle and
triangle [Young (1989)]. Numerical integration is usually necessary for more complicated
shapes.

For given mass, the hollow circular tube is most desirable, since it has the highest
torsional rigidity per weight. However, due to restrictions in size, or due to ease of fastening,
or due to aerodynamic considerations, hollow tubes are often made into oval, airfoil or
polygonal shapes. Examples include struts, turbine blades, wrenches and beams. Recently,
Wang (1995) studies the torsion of a flattened tube consisting of two half annular pieces
and two rectangular pieces. That paper used an eigenfunction expansion and point match
method which is more efficient than direct numerical integration. The present paper gen-
eralizes the method to treat arbitrary shapes. In addition, we shall use an integral form of
collocation which is much smoother than the point-match collocation used previously.
Specific results are obtained for a class of oval tubes and rounded regular polygonal tubes.

GENERAL CONSIDERATION

We assume the tube is of constant thickness (not necessarily thin) and the same cross-
sectional shape. Its median boundary is a C’ continuous closed curve, which can be
approximated by M connected segments of circular arcs or straight lines [Fig. 1(a)]. The
Prandtl stress function {Sokolnikoff (1956)] is governed by

() (b) (c)

Fig. 1. (a) Cross-section of the hollow tube; (b) an annular piece; (c) a rectangular piece.
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Vi = -2 (1)

Y =k oninner boundary

Y =0 in outer boundary 2

where the constant & is determined by

4
L dE+ 24 e =0 3
ﬁutcr (37] é ( )

Here, all lengths have been normalized by some characteristic length L, y by L2, n is the
outward normal, £ is the arc length and A, is the normalized area enclosed by the outer
boundary. The idea is to solve each annular or rectangular piece satisfying eqns (1) and
(2), match y and its derivative along adjacent boundaries, then use eqn (3) to determine &.

Suppose the ith piece is annular and convex, described by polar coordinates a; < r; < b,,
—o,; < 6, < o, [Fig. 1(b)]. The solution to eqns (1) and (2) is

In(r./b;)
In(a,/b;)

1 1
Wi(r,0) = i(blz _riz)_ |:2(bi2 —a;) “k:|
+ ¥ sin[4, In(r,/b)][ A% + B,e~ "+ (4)
n=1

where 4,, = nrn/| In(a;/b;)| > O is the eigenvalue and the factors exp(— 4,,2,) are to ensure the
coefficients 4,,, B,, remain reasonable magnitudes. If the ith piece is concave, eqn (4) can
still be used except now b; < a,. If the ith piece is flat, described by cartesian coordinates
0<y <1, —¢ < x; < ¢ [Fig. 1(c)]. The solution is in the form

) k 2 . Crre
Yilx,y) = =y + <t + 7)y,~+ 2 Sin(i,y ) [Aye ) 4 By~ it ] &)
n=1

where ¢ = thickness = |b,—q,| and k,, = nn/t is the eigenvalue.

The form of eqn (5) is a Fourier series whose convergence is well-known. The two sets
of constants A4,, and B, can be adjusted to match any two given functions of y on the
boundaries at x; = +¢;. the convergence of eqn (4) can be demonstrated as follows. Let
s = In(¢/b)/| In(a/b)| then the eigenfunction sin[4,In(r/b)] becomes sin(nms) which is a
complete Fourier series in 0 < |s| < 1. Thus, any two given function of s (or r) can be
represented at @ = +a. The convergence is absolute and uniform.

Now along each adjacent boundary of neighboring pieces the value of iy and its normal
derivative are to be matched, i.e.

Vo=, i=1 toM Wy, =y,) (6)
Yi=Vin, i=1 oM Yy =¥1) )

where y/; may be either éy,/6x; or 1/r, dyr,/08,. There are 2M sets of conditions for the 2Af
sets of unknowns A4,,, B,. Equation (3) then gives k

Mk

Pi+2Aouler = O (8)

=1

where P, is either _fﬁa,r,. 8://,»/01',-],,, do; or 52{ —oY,/0yodx,.
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Each infinite series is truncated to N terms, where the linear eqns (6)—(8) represent
2MN+1 equations and 2MN+ 1 unknowns. Convergence is usually very fast. Since V is
complete and both ¢ and " are matched on the boundary, the series representations for
cach piece would converge to the unique exact solution as N — oc.

The torsional rigidity, normalized by 2 (Lamé constant) L* is then

D = fjw da+kAinner (9)
where o is the area of the tube wall. The details are illustrated in the following examples.

THE OVAL TUBE

Figure 2(a) shows a symmetric oval tube of constant thickness which is composed of
four symmetrically placed annular sector pieces. Let the length scale be half the chord
length (normalized chord length = 2), given the aspect ratio R, the minimum outer radius
b, and thickness ¢ we find from geometry

1-2b,+1/R

by = ———7——
* = 2WR-b) 1o

. 156 s

a, = sin~" <b2—1;1>’ 0 =5 =00 (11)
a1=b|—t, (12:1)2—1‘ (12)
Ainer = 2(aiy +a30;) — (a; — a,)” sin(2a,) (13)
Aouter = z(b%“l +b§12)_(b2 '—bl)2 Sin(zaZ)' (14)

Due to symmetry the solution to each piece is given as
1 2 2 1 2 2 ln(rl/bl) ¢ A —ay) — A8, +ap)
‘l’l(rlagl)—z(bl“rl)—[z(bl_al) k 1n(a,/b1)+,,;A1"¢1"(r1)[c +e ]
(15)

(a) (b)

Fig. 2. (a) The oval tube; (b) the rounded polygonal tube.
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In(r,/b,)

1 2 2 l 2
Ya(ry, 0,) = §(b2 —ry)- |:2(b2 —a3) —k] In{a,/b,)

N
+ %, An@an(ro) [T e 0] (l6)
n=1

where
() = Sin [n (o /b))l @an(r2) = sin [ In(ra/B)] (17)
and
— AT —nn
= @by’ T () (18)

The matching conditions are

Yi(r, ) = Wz("zy—az)hz—»bz—blwl (19)
1 oy, 1 oy,
r aol (rl’al) — ry 602 (r23—a2)|r2—~b2—b|+rl' (20)

The following properties of the eigenfunction ¢,, can be derived:

- 0 m#n
J; Z(plm(rl)(l)ln(rl)drl = lln(ﬁ> m=n (21
! 2 a,
g v—1 2“" v v n
P o) dry = — =2 (B —ay (1)) 22)
a; v +}'ln
1 (=1, (@
L , In (b—l)(p,,,(r,)drl = In (b_l . (23)

Instead of using point-match, eqn (19) is multiplied by ¢,,.(r))/r, and integrated from a, to
b,. After some work, the result is

I (—-n” 1 b, B N
k| —m — A =n {21 )(1 e A A (1 e 2
[ln(az/bz) o } ' “( )( FeT )+ Y And (147

2 al n=
~ (1—(=1)") A .
=bi(b,—b)) i —(bz_bl)lﬁ—ifm[b]—al(—l)]
Bi—a) (1" (Bi—adl,
— 2, + 2in(a, /b)) m=1 toN (24)

where
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5] b, —b

I, = J —In (2—QL-r~‘)<p1m(r1)drl (25)
a N by
by |

S = J r¢|m(rl)¢2n(bz-b1+’1)d71 (26)
a "1

are numerically evaluated. Similarly, eqn (20) gives

1 b,
A""Z ( )Alm(l—e”ul"' N+ Z Ay Hppdy(1—e=#2*2) =0, m=1 toN (27)

n=

where

(4 1
A e e e 09)

)

The condition eqn (3) 1s

4U (ﬁ) a6, + f (i) d02]+2A0m,=0. 29)
A 3

This yields
k[ 29 253 ]+ Z Al (1_“_ — 24, 1)+ Z A2 (] __e—ZAanxz)
In(a, /b,) ln(az/bz) ! "

_ (bt —at)a,  (B3—ad)a, 1 )
= Tinta /b)) T 2intaajby T 2020 sinGm). - (30)

Equations (24), (27) and (30) are linear algebraic equations easily inverted for the
2N+ 1 unknowns, A,,, A,,, k. The accuracy is refined by increasing N. The convergence is
very fast. From eqn (9) the torsional rigidity is

_ Mg o Gi—al-2ke [, @y
D—2(b1 ay)*+ 2In(a, /b bi+ai|2ln b, 1

N [bi—ai(=1)] ,
—4 A e — 1— = 241,74
24 4472, (=)

%oy o (b3—a3 -2k, [, a\
+ 2(b2 az) + 21n(az/b2) 2+ 2ln b2 1

N 2_ 42 —1)” )
—4 Z Az,, [b2 a2( ) ](lﬁeﬁz,_znaz)

n=1 4+}v§”

+2k[a?a, + ado, — (a, —a,)? cos o, sin a,]. (€1))
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Table 1.
=04 t=0.1
N=1 0.4237 0.1785
3 0.4223 0.1785
5 0.4221 0.1785
7 0.4221 —

As an illustration of how fast the convergence is, Table 1 shows some typical results
for rigidity D as N is increased. (aspect ratio = 1.25, b, = 0.5).

We see the convergence is slightly slower for thicker tubes. Unless ¢ is very close to b,
inducing a sharp corner, the one-term (N = 1) result is within 1% of the asymptote as N —»
0. Thus, solving eqns (24), (27) and (30) using N = 1 is usually sufficient. The three
equations and three unknowns can be inverted almost analytically. If ¢ is close to b,
convergence is much slower and one may improve the rate of convergence of the Fourier
series by the methods of Kantorovich and Krylov (1958).

The maximum shear stress (normalized by (Lamé constant) + L) occurs either at point
E or point Fin Fig. 2(a)

alﬁl (b7 —ai —2k)

n 1" — A%
T =@, 0) = —a = 2ZAM( e (32)

a./,z (b3 — a2 —2k)

}'Zn
T = (bZ,O) 2 2b2 ln(az/b )

b,

N
+2 z Ay S e, (33)

THE ROUNDED REGULAR POLYGONAL TUBE

The cross-section of the tube is composed of annular sectors and rectangles [Fig. 2(b)].
Let K be the number of sides and 2L be the minimum width. From geometry one can show
x = 7n/K,

Aipner = ma* +2acK+c* cot(x) K (34)
Agueer = nb* +2bcK+¢* cot(x)K (35)

and c is related to b from Table 2.

Table 2.
K c

3 21 —b)/f

4 (1-b)

5 [(1 —b)]/[cos(3n/10) +cos(n/10)]
6 (1-5)//3

8 (1-5)/(1 +/2)

12 (1—6)/(2+2//3)
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Due to symmetry, we need to consider only two pieces

10,6) = 3061 —| 30 =)~k [RRL § A 4o 00 39
ba) = =5 (14 B BusinGs)(eno-per) a7

where A, = —nn/In(a/b) and k, = nr/t. The matching conditions are
() = Ya(—c.b=1) (8)
W) = W2 b (39)

Again these are integrated with the weights ¢,,/r and ¢,,, respectively, to yield

= b, .
k[ - el 1))]

N
+4, —ln( )(1+e‘“ Y 3 B, S (1422
n=1

( bz—tb> A=(—=D"+(—- ~ 1))
+—T—( a*(— 1)’")+l(b2—~a2)(_l)m m=1 toN (40)
2(4+2%) 2 A
1 b —24, 2
A,,,zl (),,,(l—e “)+ZBT,,,,,K (1—e %), m=1 toN 41)
where
S = r%sin(x,,(b——r)ypm(r) dr 42)
b
T,,= j sin(k,(b—r))e,,(r)dr 43)

are to be evaluated by quadrature. Equation (3) becomes

=2 S S A1)+ T Byl — 1)
inapy ~¢) T & A e 2 B
,  (BP—ad)a  wb®

— ~ T _— _ a2
= bla+ 2 Tntalh) e +ct—2¢b—c? cot(a). (44)

Equations (40), (41) and (44) are to be solved for A4,, B, and k. The convergence is
again very fast. The torsional rigidity is
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&, ., BP—d =20l , a
D=2K{§(b —a’) +W[b +a (2ln (b)—lﬂ

NP1, .. (P kt
—nglAnT(l—e ~)+<g+~2~)c

N 1
+ ; B, E(l —(=DMd —‘e_z'c"c)}
+k[ra* +2acK+ c* cot(a)K]. 45)

The maximum shear is either at point £ or point F:

2 _ 0’ —a’=2k) & atn
= (@ 0) = —am o T2 L A1) e @)
0 k ud
=00 =K 2§ pens @
n=1

RESULTS AND DISCUSSION

For the oval tube the parameters are aspect ratio R, minimum outer radius #, and
thickness r. Their ranges are restricted by 0 < r < b, < 1/R. Figure 3(a) shows the torsional
rigidity as a function of the ratio t/b, for various constant b, (aspect ratio R = 1.25). The
b, = 1/R = 0.8 limit was computed by letting b, = 0.799. The result agrees with that from
Wang (1995) for a tube consisting of two annular pieces and two straight pieces. Also
shown in the figure is the empirical formula from membrane analogy [Timoshenko and
Goodier (1970)]

2(mean area)’s (Aouter + Ainner)*
~ mean perimeter  4(x, b, +0,b, +a,a, +0,a,)

(48)

Equation (48) is surprisingly accurate for small 7 (r < 0.2). The corresponding maximum
shear stress is shown in Fig. 3(b). For high values of 5, the maximum occurs at point F in
Fig. 2(a), but switches to point £ for smaller b, or larger .

Point F is an inner re-entrant corner where the stress becomes infinite as the corner
becomes sharp (t/b, — 1). Figure 3(b) shows the shear stresses at both places should be
considered in the design of hollow torsion elements. For the prediction of maximum shear
stress, the membrane analogy is too inaccurate to be compared. The results for larger aspect
ratios are depicted in Figs 4 and 5.

Tubes whose cross-sections are described by confocal ellipses look similar to the ovals
considered in this paper. However, the elliptic tubes do not have constant wall thickness.
Not only are they more difficult to manufacture, the torsion properties are also undesirable,
since the thinnest region of the tube is along the minor axis where the stresses are already
high.

Figure 6(a) shows the torsional rigidity for the rounded square tube (K = 4). For
clarity we plotted D vs ¢ for various constant . When b = 1 we recover the exact solution
for a hollow circular tube

D==[1—(1—-0%. (49)

L]

Also shown is the approximate formula for small ¢ equivalent to eqn (48)
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p=0B
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-

o 04 o8 '
t/b,

Fig. 3. Oval tube aspect ratio = 1.25: (a) torsional rigidity. Dashed lines are from eqn (48); (b)
maximum shear stress. Solid lines: eqn (33) at point F, dashed lines: eqn (32) at point E.

D~ [(b* +a®)+2c(b+a)K+2c2 K cot(e))?t
~ 2[n(a+b)+2cK] '

(50

The corresponding maximum shear stress is shown in Fig. 6(b). Depending on the thickness
and rounding, the maximum shear stress may occur at either point E or point F. The results
for the rounded hexagonal tube (K = 6) are shown in Fig. 7. For even larger X the results
tend to the hollow circular tube, except at possible re-entrant corners where the shear stress
may be high.

CONCLUSIONS

In this paper we introduced a method to solve the torsion problem of any smooth,
constant-thickness hollow tube [Fig. 1(a)]. The method is accurate and highly efficient. In
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12r (b)

t/b,
Fig. 4. Same legend as Fig. 3, except aspect ratio = 2.

comparison, the method of finite differences not only has to contend with curved boundaries,
the required number of computations is more than the square of that used in this paper.

In matching the eigenfunction solutions for adjacent pieces, one can use point match
{Wang (1995)] or other methods for collocation [Kolodziej (1987)]. Due to the skewness
of the eigenfunction, the placement of collocation points has been a problem. We find
integration weighted with the smaller radii eigenfunction voids this uncertainty. In addition,
due to orthogonality, the coefficients of the more skewed eigenfunction are isolated.

It has long been recognized hollow tubes should have rounded corners. The re-entrant
inner corner has little effect on torsional rigidity, but causes a high local shear stress. Our
investigation shows, depending on geometry, the maximum shear stress may or may not
occur at the re-entrant inner corner. In certain cases it occurs at the outside surface on the
minor axis. Membrane analogies could not accurately estimate this maximum shear stress,
even for thin tubes. Lastly, we obtain results for some classes of hollow tubes in the shape
of ovals and rounded polygons. Our Figs 3—7 should be highly useful in the design of
hollow torsion elements.
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Fig. 5. Same legend as Fig. 3, except aspect ratio = 4.
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Fig. 6. Rounded square tube (K = 4): (a) torsional rigidity. Dashed lines are from eqn (50); (b)
maximum shear stress. Solid lines: eqn (47) at point F, dashed lines: eqn (46) at point E.
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Fig. 7. Rounded hexagonal tube (K = 6) : (a) torsional rigidity ; (b) maximum shear stress.
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